

Drinted Dager 04	Subject Code: DMIECO201
	Subject Code:- BMIEC0201 Roll. No:
NOIDA INSTITUTE OF ENGINEERING A	ND TECHNOLOGY GREATER NOIDA
(An Autonomous Institute Aff	
*	ech (Integrated)
SEM: II - THEORY EXAMI	NATION (2023 - 2024)
Subject: Basic Electrical an	
Time: 3 Hours	Max. Marks: 100
General Instructions:	anar with the correct course and branch ate
IMP: Verify that you have received the question polynomial. This Question paper comprises of three Section.	•
Questions (MCQ's) & Subjective type questions.	11, D, & C. II consists of muniple choice
2. Maximum marks for each question are indicated	d on right -hand side of each question.
3. Illustrate your answers with neat sketches wher	ever necessary.
4. Assume suitable data if necessary.	
5. Preferably, write the answers in sequential orde	
6. No sheet should be left blank. Any written mater evaluated/checked.	riai after a blank sneet will not be
evanuatea/checkea.	
SECTION-A	20
1. Attempt all parts:-	
	re connected in star. If this star is converted 1
into equivalent delta, the resistance will	
(a) 9 ohm	1
(b) 0 ohm	
(c) 3 ohm	
(d) None of the above	
1-b. If the load increases means their equival	lent resistance. (CO1)
(a) None of these	
(b) Remains constant	
(c) Decreases	
(d) Increases	
1-c. Find the effective value of the given equ	vation $I = 200 \sin (\omega t - 30 \text{ o})$ (CO2)
(a) 141.4	
(b) 100	
(c) 200	
(d) none of above	
1-d. The unit of apparent power is (CO2)	1
(a) KVA	
(b) KVAR	

	(c)	KW	
	(d)	Watt	
1-e.	T	he no-load current drawn by transformer is usually.(CO3)	1
	(a)	0.2% to 0.5%	
	(b)	2% to 5%	
	(c)	12% to 15%	
	(d)	20% to 30%	
1-f.		or a transformer with primary turns 100, secondary turns 400, if 200 V is applied primary we will get(CO3)	1
	(a)	3200 V at secondary	
	(b)	1600 V at secondary	
	(c)	800 V at secondary	
	(d)	80 V at secondary	
1-g.	A	semiconductor has temperature coefficient of resistance (CO4)	1
	(a)	Positive	
	(b)	Negative	
	(c)	Both may be possible	
	(d)	None of the above	
		a semiconductor, the energy gap between the valence band and conduction band about (CO4)	1
	(a)	5 eV	
	(b)	10 eV	
	(c)	15 eV	
	(d)	1 eV	
1-i.	V	That is the ideal voltage gain of an op-amp? (CO5)	1
	(a)	0	
	(b)	1	
	(c)	∞	
	(d)	It varies depending on the op-amp model	
1-j.		In an inverting amplifier configuration, if the input voltage is positive, what is the polarity of the output voltage? (CO5)	
	(a)	Positive	
	(b)	Negative	
	(c)	Zero	
	(d)	It depends on the op-amp	
2. Att	` '	all parts:-	
2.a.	T	wo resistor of 4Ω and 6Ω are connected in parallel. If the total current is 30 A. and the curent through each resistor. (CO1)	2

2
2
2
2
30
6
6
6
6
6
6
6
50
10
10

- 5. Answer any one of the following:-
- 5-a. Three sinusoidal voltages acting in series are given by $V1 = 10 \sin 440t$, $V2 = 105 \sin (440t 450)$ and $V3 = 20 \cos 440t$. Find the expression of resultant voltage. Also calculate frequency and RMS value of resultant voltage. (CO2)
- 5-b. Explain the term earthing? What are the advantages of earthing. With physical significance explain the methods to elaborate it (CO2)
- 6. Answer any one of the following:-
- 6-a. Compare the conventional and non-conventional energy source based power generating plants along with their advantages and disadvantages.(CO3)
- 6-b. In a 25 kVA, 2000 V/200 V transformer the iron and copper losses are 350 W and 400W respectively. Calculate the efficiency of half load and 0.8 pf. lagging. Also determine the maximum efficiency and corresponding load KVA.(CO3)
- 7. Answer any one of the following:-
- 7-a. Write Short note on : a) LED b) LCD c) OLED. (CO4)
- 7-b. For the zener diode network of given figure, determine VL, VR, IZ and PZ. (CO4)

- 8. Answer any one of the following:-
- 8-a. Define CMMR of a differential amplifier. Design an adder circuit using an op-amp 10 to give the output Vo=-(V1+4V2+8V3); where V1, V2 and V3 are the three inputs. (CO5)
- 8-b. Draw the Block diagram of Digital multimeter. Give some application of DMM. (CO5)